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Machine-learning techniques, including clustering algorithms, support vector machines

and hidden Markov models, are applied to the task of classifying trajectories of moving

keratocyte ceils. The different algorithms are compared to each other as well as to expert

and non-expert test persons, using concepts from signal-detection theory. The algorithms

performed very well as compared to humans, suggesting a robust tool for trajectory
classification in biological applications.

1. Motivation and Objectives

Empirical sciences create new knowledge by inductive learning from experimental ob-

servations (data). Biology, or life science in general, is a prime example for a field that

is facing a rapidly growing amount of data from continuously more sophisticated and

efficient experimental assays. The general lack of predictive models makes quantitative

evaluation and learning from the data one of the core processes in the creation of new
knowledge. Trajectories of moving cells, viruses or whole organisms are a particularly

interesting example, as they represent dynamic processes. The application of machine-

learning techniques for automatic classification of data mainly serves 3 goals: First, one

wishes to learn more about the biological or biochemical processes behind the observed

phenomenon by identifying the parameters in the observation that are significantly influ-

enced by a certain change in experimental conditions (causality detection). Second, the

information contents of a given data set with respect to a certain property of interest

may be estimated (capacity estimation) and third, automatic identification and classifi-
cation of vast amounts of experimental data (data mining) could facilitate the process

of interpretation. The paper starts by formally stating the problem of classification and
introducing the notation. Then, different machine-learning techniques are summarized,

starting from clustering methods in the d-dimensional real space Rd and proceeding

to risk-optimal separation in n_d and dynamic signal source models in ]Rd x T. Finally,
the results of two automatic classification experiments of keratocyte cell trajectories are

presented and compared to the performance of human test subjects on the same task.

2. The classification problem

Classification is one of the fundamental problems in machine-learning theory. Suppose

we are given n classes of objects. When we are faced with a new, previously unseen object,
we have to assign it to one of the classes. The problem can be formalized as follows: we

are given m empirical data points

t Institute of Computational Science, ETH Zfirich, 8092 Zfirich, Switzerland
Department of Biochemistry, Stanford University

¶ Institute of Computational Science, ETH Ziirich and CTR/NASA Ames



306 I.F. Sbalzarini, J. Theriot _ P. Koumoutsakos

(zl,yl),..., (Zm,ym) e Z x y (2.1)

where X is a non-empty set from which the observations (sometimes called patterns)

are taken and in the present context y = {1,...,n}. The Yi E Y are are called labels

and contain information about which class a particular pattern belongs to. Classification

means generalization to unseen data points (x, y), i.e. we want to predict the y G Y given

some new observation x E X. Formally, this amounts to the estimation of a function f :

X _ y using the input-output training data (2.1), generated independent and identically

distributed (i.i.d.) according to an unknown probability distribution P(x, y), such that f
will optimally classify unseen patterns x E 2(. The criterion of optimality is to minimize
the expected risk

Ix dP(x, y) (2.2)R[:] = ×9
l (f(x), Y)

where l denotes a suitably chosen cost function. A common choice is the O//1-1oss, for

which l(f(x),y) is 0 if (x, y) is a correct classification and 1 otherwise. Unfortunately,

the expected risk cannot be minimized directly, since the underlying probability distri-
bution P(x, y) is unknown. Therefore, machine-learning algorithms try to approximate

R[f] based on the available information from the training data. The most common ap-

proximation is the empirical risk

1 13%

Rernp[f] --- m _ l (f(x_), y_) (2.3)
i=1

Different classifiers use different approximations to (2.2) as well as different methods to

minimize those approximations.

3. Mac/fine-learning methods used

3.1. k-nearest neighbors (KNN)

One of the simplest classifiers if 2( = I_d is the k-nearest neighbor (KNN) algorithm.
A previously unseen pattern x is simply assigned to the same class y E Y to which the

majority of its k (to be chosen) nearest neighbors belongs. The algorithm can be seen as

a very simple form of a self-organizing map (Kohonen (2001)) with fixed connections.

3.2. Gaussian mixtures with expectation maximization (GMM)

Gaussian mixture models (GMM) are more sophisticated clustering algorithms in X =

[Ca. They make use of Gaussian probability distributions on [Ca and try to approximate

the unknown distribution P(x, y) on 2( x y by a mixture of n Gaussians Hi(x, y,/_i, Zi)

with means #i ERa, i = 1,...,n and covariance matrices Ei E I_dxd, i -- 1,...,n.

The parameters #i and Ei are chosen so as to maximize the log-likelihood that the given

training data has actually been drawn i.i.d, from the probability distribution P(x, y) =

_']_n=xAfi(x, y,/zi, Ei). The algorithm can be written as follows:

Step 1: Choose a set of initial means/_1,... ,/_n using the k-means clustering algo-

rithm (Hartigan & Wong (1979)); all covariances are initialized to identity: Ei = In.
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Step 2: Assign the m training samples to the n clusters Fi using the minimum Maha-

lanobis distance rule: Sample x belongs to cluster Fi if the corresponding log-likelihood

measure becomes minimum, i.e. i = argmini .]l°g (det (_i)) + (x- #i)'7 (Zi)-i (x- #i)].

Step S: Compute new means #i +-- _zer, x/#{Fi} and new covariance estimates

Ei _- _er, (z - #_) (z - #i) T/#{F_}, where #{Fi} denotes the number of vectors x
assigned to cluster Fi in step 2.

Step 4: If the changes in the means and covariances are smaller than a certain toler-

ance, stop; otherwise go to step 2.

3.3. Support Vector Machines (SVM)

Support vector machines (SVM) are kernel-based classifiers (Mfiller et al. (2001)) for bi-

nary classification in X = [¢d. Past applications included time-series prediction (Mukher-

jee et al. (1997)), gene expression analysis (Brown et al. (2000)) as well as DNA and pro-

tein analysis (Zien et al. (2000)). SVM make use of the following theorem of statistical

learning theory by Vapnik (1998) that gives an upper bound for the expected risk:

Theorem 1: Let h denote the Vapnik-Chervonenkis (VC) dimension of the function

class 5r and let Remv[f] be the empirical risk for the 0/l-loss of a given classifier function

f E 5r. It holds, with probability of at least 1 - 5, that:

,/h (log + 1)- log
R[.f] < R_,np[f] + (3.1)

V m

for all 5 > 0, for f e 5r and m > h.

The VC dimension h of a function class 9v measures how many points x E A' can be

separated in all possible ways using only functions of the class 5r. Kernel methods use a

mapping (I)(x) of the training data x into a higher-dimensional feature space 7-l in which

it can be separated by a hyper-plane f(x) = (w. _(x)) + b. In 7/, the optimal separating

hyper-plane is determined such that the points (I)(x) closest to it (called the support

vectors) have maximum distance from it, i.e. such that the "safety margin" is maximized.
This is done by solving the quadratic optimization problem (w, b) = argminw,b ½11wll_

subject to the condition that w • ¢(x) + b is a separating hyper-plane. Solving the dual

optimization problem, the Lagrange multipliers a_, i = 1,..., s are obtained, where s is
the number of support vectors. The classifier function f in _ is then given by:

f(x) = -_ + 2" sign yicq (_(x). (I)(xi)) + b

Since this depends only on the scalar product of the data in feature space, the mapping
¢ does not need to be explicitly known. Instead, a kernel function k(x, xi) is introduced

such that k(x,xi) = _(x) • ¢(x_). The support vector classifier f : X _ (1,2} to be

evaluated for any new observation thus is:

f(x) = -_ + 2 "sign yiaik(x, xi) + b (3.2)

Notice that the sum runs only over all support vectors. Since generally s << m, this allows
efficient classification of a new observation by comparing it to a small relevant subset of

the training data.
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3.4. Hidden Markov models (HMM)

Hidden Markov models (HMM) are stochastic signal source models, i.e. they do not re-

quire observations x E _a but can treat discrete dynamic time series x = {O1, • .., OT} E

X, Oi E IlL In the past, their most successful application was in speech recognition

(Rabiner (1989)). An HMM attempts to model the source producing the signal x as a

dynamic system which can be described at any time t as being in one of r distinct dis-

crete states, Q1,..-, Qr, which are hidden, i.e. cannot be observed. At regularly-spaced

discrete times ti = iSt, i = 1,...,T, the system changes its internal state, possibly

back to the same state. The process is assumed to be Markovian, i.e. its probabilistic

description is completely determined by the present and the predecessor state. Let qi

denote the actual state of the system at time ti. The Markov property thus states that

P [qi = Qj[qi-1 = Qk, qi-2 = Qt,...] = P [qi = Qj]qi-1 = Qk] where P [E[F] denotes the
probability of an event E given that F occurred. The state transitions are described by

probabilities ajk = P [qi = Q_lqi-1 = Qj] forming the elements of the state transition

matrix A and obeying the constraints ajk > 0 V j, k and _k=l ajk = 1. At each time
point ti the system produces an observable output O_, drawn from the output probabil-

bity distribution bQ, (0) associated with state Qi; B = { Qj }j=l. The model is completed
Q rwith the initial state probabilities _ = {_j = P [ql = J]}j=l and the complete HMM is

denoted by X = (A, B, 7r).

Given the form of HMM described above, there are three basic problems of interest

that must be solved (Rabiner (1989)):

(1) Given an observation x = {O1,..., OT} and a model X = (A, B, r), compute the

probability P [x]X] that the observation x has been produced by a source described by A.

(2) Given an output sequence x = (01,..., OT} and a model X = (A, B, 7r), determine

the most probable internal state sequence {ql,..., qT} of the model )_ that produced x.

(3) Determine the model parameters _ = (A, B, _r) to maximize P [x]A] for a given
observation x.

3.4.1. Discrete hidden Markov models (dHMM)

If the set of possible distinct values {vk } of any output Oi is finite, the HMM is called

discrete (dHMM). The output probability distribution of any state Qj is thus discrete:

bQ_ = {bQ_(k) = P[Oi = valqi = Qj]} for k = 1,...,i.
Direct solution of problem (1) would involve a sum over all possible state sequences:

P [xl£] = _-_v{q, ..... qr} P [xl {ql,..., qT}, X] P [{ql,..., qT} IX]. The computational cost of

this evaluation is O(2TrT), which is about 105° for an average dHMM and thus clearly

unfeasible. The forward-backward algorithm, as stated by Baum & Egon (1967), Baum &
Sell (1968), solves this problem efficiently in O(r2T). The solution of problem (2) is given

by the Viterbi algorithm (Viterbi (1967), Forney (1973)) and the "training problem" (3)

is solved using the iterative Baum-Welch expectation maximization method (Dempster

et al. (1977)).

3.4.2. Continuous hidden Markov models (cHMM)

If the observations Oi are drawn from a continuum, bQ_ is a continuous probability

density function and the HMM is called continuous (cHMM). The most general case for
which the above three problems have been solved is a finite mixture of M Gaussians Ark,

thus boj (O) = _M=I cjkAfk(O,/_jk, _2j_) (see Liporace (1982), Juang et at. (1985)).
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FIGURE 1. Temperature data set. 46 trajectories of moving keratocytes were used per class. The
3 classes are defined by the 3 temperatures at which the observations were made. All trajectories

axe shifted such that they start at the origin of the coordinate system.
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FIGURE 2. Acclimation data set.58 trajectoriesof moving keratocytes were used per class.The

3 classesare defined by the 3 temperatures at which the fishwere acclimated for 3 weeks prior

to the experiment. All trajectoriesare shiftedsuch that they startat the originof the coordinate

system.

4. Application to trajectory classification

4.1. The data

All machine-learning classifiers described in the previous section were applied to the task

of classifying trajectories of living cells. The cells were keratocytes taken from the scales

of the fish Gillichthys mirabilis (commonly called longjawed mudsucker). Isolated cells

cultured on glass coverslips were observed using an inverted phase-contrast microscope
connected to a video camera. The 2D trajectories of the moving cells were then extracted

from the movies using the semi-automatic tracking software Metamorph (Universal Imag-

ing, Inc.) yielding position readings at equidistant sampling intervals of St =15s. The
observations x in the present case were position/time data sets, thus X = N2 x T where

T denotes the discrete ordered time space. Two different experiments were performed:

For the temperature data set, fish were acclimated at 16°C, i.e. they were kept in water

of this temperature for at least 3 weekst prior to cell isolation. The movement of the
isolated cells was then recorded at 10°C, 20°C and 30°C using a temperature-controlled

microscope stage. 167 trajectories (46 at 10°C, 63 at 20°C and 58 at 30°C) from 60
different cells were collected. To make all classes the same size, 46 trajectories were used

from each making a total of N = 138. Figure 1 shows them for the 3 temperature classes.
For the acclimation data set all cells were observed at 20°C but they were taken from

three different fish populations acclimated at 10°C, 16°C and 25¢C, respectively. From

t After this time the adaptive changes in liver lipid content are complete.
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FIGURE 3.Encoded data sets.Both the temperaturedata set(left)and the acclimationdata
set (right)were encoded usingthe averageand the minimum ofthe speed alonga trajectory.
Data pointsfrom the I0°C temperatureand 10°C acclimationclassesaredenotedby circles(o),
thosefrom the20°C temperatureand 16°C acclimationclassesby triangles(_>)and thosefrom
the 30°C temperatureand 25°C acclimationclassesby crosses(x).

the recorded 184 trajectories (58 for 10°C, 63 for 16°C, 63 for 25°C) of 60 different cells

a total of N = 174 (58 in each class) was used as shown in figure 2. Both data sets have
n = 3 classes.

4.2. Data preprocessing and encoding

Since the trajectories x E _2 x ]r are not vectors in _a, encoding is necessary for all

machine-learning algorithms considered. HMM are capable of handling dynamic data in

IR× _" and thus need the least encoding. Since the reaction rates of many biochemical pro-

cesses that contribute to cell movement depend on temperature, the latter is suspected

to influence the speed of the movement. The encoding for the cHMM was thus chosen

to be the momentary speed of the movement along the trajectory. For dHMM the speed

was discretized into 4 equidistant bins. One HMM was trained for each of the 3 classes.

After evaluating the probability P [xlAi ] of a new observation x against the models Ai

for all classes i = 1, 2, 3, x is assigned to the class which has the highest probability. For

all other algorithms, a quasi-static representation in Rd has to be found. The following

properties were calculated for all trajectories: average speed, standard deviation of speed,

mean angle of direction hange between 2 subsequent measurement points, standard de-

viation of those angles, distance between first and last point of trajectory compared to

its total path length, decay of autocorrelation functions of speed and direction-change

angle, minimum and maximum occurring speed and angle change. Histograms of the
distribution of these properties among the different classes of trajectories gave evidence

about which are the most discriminating properties. For the following considerations, the
mean and the minimum of the speed of a trajectory over time were taken as encoding

properties. The trajectories were thus represented as vectors in ]Rz. Figure 3 shows the

encoded data sets for both the temperature and the acclimation cases. It can be seen

that the clusters mostly overlap, making the data non-separable in this encoding space.

4.3. Classification and evaluation of the results

The different classification algorithms were trained on a subset of rn = N/2 data points
from each set and then tested on the remainder of the data. For the KNN we set k = 5
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FIGURE 4. Schematic of the theory of signal detection. Observations that belong to a class i of
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allfutureobservationsabove C to the classof interest.The discriminationcapabilityof the

classifierisgivenby the normalizeddistancemeasured_.

and for the SVM a Gaussian kernel with standard deviation a = 0.05 was used. To reduce

the random influence of which particular data points are taken for training and which

for testing, the whole procedure was repeated 4 times for different partitioning of the

data into training and test sets. Let D = {(xj,yj), j = 1,... ,N} be the complete data

set of all N recorded trajectories xj with corresponding class labels yj, a random T c 10

with #{T} = m the training set and g C 10 with #{g} = N - m and g N T = 0 the
test set. An algorithm, trained on T, classifies the trajectories xj E £ without knowing

the correct yj. The outcome of this classification is _j. The hit rate for class i is then
defined as hi = #{xj E E : _j = yj = i}/#{xj E E : yj = i} where #{A} denotes
the number of elements in a set A. The ]alse-alarm rate (sometimes also called "false

positives") for class i is given by fi = #{xj E £ : _j = i ^ yj # i}/#{x I E £ : yj _k i}.

The complementary quantities mi = 1 - hi and ri = 1 - sti are termed miss rate and

correct rejection rate, respectively. In each classification experiment, both the hit rate
and the false-alarm rate were recorded for each temperature class since they compose

the minimal sufficient set of properties.

Using the theory o] signal detection (Green & Sweets (1966)), which was originally

developed in psychophysics and is widely used in today's experimental psychology, two
characteristic parameters were calculated from hi and fi. Figure 4 depicts the basic idea:

the occurrence of observations that belong to class i and such that they do not belong

to class i is assumed to be governed by 2 different Ganssian probability distributions.

During training, the classifier determines a threshold C above which it will assign all
future observations to class i. If, after transformation to standard normal distributions,

C = 0, the classifier is said to be "neutral"; for C < 0 it is called "progressive" and
for C > 0 "conservative". The discrimination capability of the classifier is given by the

separation distance d' of the two normalized (by their standard deviation) distributions.
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class hit [%] f.a. [%] d' C

10°C 100.0 2.2 oo -
20°C 54.4 24.5 0.8 0.29
30°C 46.7 22.9 0.7 0.41

TABLE 1. KNN on temperature data

class hit [%] f.a. [%] d' C

10°C I00.0 2.2 oo -
20°C 51.1 27.2 0.6 0.29
30°C 41.3 24.4 0.5 0.46

TABLE 3. SVM on temperature data

class hit [%] f.a. [%] d' C

10°C i00.0 2.2 cc -
20°C 76.1 30.5 1.2 -0.10
30°C 34.8 11.9 0.8 0.79

class hit [%] f.a. [%] d' C

10°C 100.0 2.2 cc -
20°C 54.3 15.7 1.1 0.46
30°C 68.5 20.7 1.3 0.15

TABLE 2. GMM on temperature data

class hit [%] f.a. [%] d' C

10°C I00.0 3.3 oo -
20°C 77.2 28.3 1.3 -0.09
30°C 37.0 11.4 0.9 0.77

TABLE 4. dHMM on temperature data

TABLE 5.cHMM on temperaturedata

d' = 0 corresponds to "pure random guessing" where hits and false alarms grow at equal

rates and d' = oo characterizes a "perfect classifier". Since the hit rate is given by the area
under the solid curve above C and the false-alarm rate is the area under the dashed curve

above C, both C and d' can be calculated from hi and fi and the latter two completely
describe the situation. Classifiers were compared based on d', since algorithms that are

capable of better separating the two probability distributions will have a lower expected
risk R.

5. Results

5.1. Temperature data set

The temperature data set as introduced in section 4.1 was classified using all the algo-
rithms presented in section 3 and the results were evaluated according to section 4.3.

Tables 1 to 5 state the average percentage of hits and false alarms (over all different par-

titioning of the data into training and test sets) as well as the normalized discrimination

capabilities d' and thresholds C of the classifiers for each temperature class.

Figure 5 graphically displays the hit and false-alarm rates of the classifiers for the 3

temperature classes. The averages over all data partitionings are depicted by solid bars,



Machine learning for trajectory classification 313

lOO

80 _ .................

70 _ .....

.__40

20 ..... _ ....... r

c nw c nw c nw c nw c nw c nw c nw c nw c nw c nw

KNN GMM SVM dHMM cHMM KNN GMM SVM dHMM cHMM

FIGURE 5.Hit and false-alarmratesforallclassifiers.The percentageof hits(left)and false
alarms(right)on thetemperaturedatasetisshown foreachclassifierineachofthe3 temperature
classes:I0°C ("c"),20°C ("n')and 30°C ("w').The errorbarsrangefrom thesmallestobserved
rateto thelargestone (rain-maxbars).

l

'i

_illil

0
c n w c n w c n w c n w c n w

KNN GMM SVM dHMM cHMM

FIGURE 6. d' values for all.classifiers. The value of the discrimination sensitivity on the temper-
ature data set is shown for each classifier in each of the 3 temperature classes: 10°C ("c'), 20°C

("n")and 30°C ("w').

the error bars indicate the minima and maxima in the measurements. The d' values of

the different classification methods are compared in figure 6.

5.2. Acclimation data set

The same classification experiments were also performed using the acclimation data set
as introduced in section 4.1. The results are summarized in tables 6 to 10 using the same

format as in the previous section. Figure 7 shows the average hit and false-alarm rates

of the classifiers for the 3 temperature classes along with the rain-max bars. Again the

classifiers are compared against each other in figure 8 based on their d'.
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class hit [%] f.a. [%] d' C

10°C 77.6 23.3 1.5 -0.02
16°C 59.5 15.5 1.3 0.39
25°C 41.4 22.0 0.6 0.50

TABLE 6. KNN on acclimation data

class hit [%] fla. [%] d' C

10°C 86.2 20.3 1.9 -0.13
16°C 62.9 9.9 1.6 0.48
25°C 54.3 18.1 1.0 0.40

TABLE 8. SVM on acclimation data

class hit [%] f.a. [%] d' C

10°C 75.0 19.4 1.5 0.09
16°C 56.0 6.9 1.6 0.67
25°C 61.9 27.2 0.9 0.15

class hit [%] f.a. [%] d' C

10°C 88.0 21.1 2.0 -0.19
16°C 58.6 4.3 1.9 0.75
25°C 61.2 20.68 1.1 0.27

TABLE 7. GMM on acclimation data

class hit [%] fla. [%] d' C

10°C 84.5 20.3 1.8 -0.09
16°C 71.6 22.4 1.3 0.09
25°C 35.3 11.6 0.8 0.79

TABLE 9. dHMM on acclimation data

class hit [%] fla. [%] d' C

10°C 88.5 24.8 1.9 -0.26
16°_ 47.3 16.5 0.9 0.52
25°C 33.8 23.8 0.3 0.57

TABLE 10. cHMM on acclimation data TABLE 11. Humans on acclimation data

In addition to machine-learning algorithms, the acclimation data set was also classified

by humans. After training on a set of 30 trajectories and their labels, the test subjects

were presented with one unknown trajectory at a time. Individual position measurement

points were symbolized by circles along the trajectory. Since they are equidistant in

time, this includes information about the speed. All trajectories were shifted such as
to start at (0, 0) and they were rotated by a random angle prior to presentation. Each

person classified 174 trajectories appearing in random order. The average result over 5

test subjects is given in table 11. The best-performing person who declared after the

experiment to have looked at speed information reached only d' = 2.0 for the 10°C class,
d' = 1.6 for the 16°C class and d' = 0.7 for the 25°C class. The best person of all reached

d' = 2.1, d_ -- 1.9 and d' -- 1.0, respectively by taking into account both speed and

shape (curvature) information. The lowest result of the test group was d' = 1.9, d' = 0.1,
d' = -0.6.

6. Conclusions and future work

Considering the results of section 5, the following conclusions can be made: (1) All

methods perform equally well in the case of separable clusters (10°C temperature class).

(2) On the acclimation data set, GMM perform best, closely followed by SVM. This is

evidence that the data is actually normally distributed. (3) All classifiers have relatively
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low values of C, thus being more or less neutral. (4) The HMM methods are the least

robust due to their dynamic character. The dHMM and the cHMM have comparable per-

formance. (5) Humans on average perform less well than the algorithms. This could be

due to bias based on prior information or expectations, fatigue effects or inaccuracy. (6)

The best test person performs about equally well as the best machine-learning algorithm,

indicating that the latter was able to extract and use all the information contained in

the data set. In summary, it has been demonstrated that automatic classification of bi-

ological trajectories is possible with near-maximum accuracy and that machine-learning

techniques can be a useful tool in estimating the information content and the relevant
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parameters in a data set. Future work will be concerned with implementing a general-
purpose framework code for classification of dynamic data sets in multiple dimensions. A

modular approach will allow different classification algorithms to be used, and a prepro-

cessor is envisaged that automatically detects those properties that best cluster (separate)

the data at hand. Future applications will include the analysis of Listeria and Shigella
movement inside host cells as well as virus movement and automatic virus detection and

identification systems.
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